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1 NETWORK ARCHITECTURE DETAILS

Network structure of our material-geometry network. , MGNet, is
shown in Fig. 1.We share DenseNet121 [Huang et al. 2017] as the 2D

CNN encoder backbone, which produces 5 levels of intermediate

latent space features 𝑋1 ∼ 𝑋5. 4 separate branches of decoders

predicts albedo 𝐴, normal 𝑁 , depth 𝐷 , roughness 𝑅 and metallic

𝑀𝑡 with skip connections. Note that 𝑅 and𝑀𝑡 is predicted by the

same branch of decoder with 2-channel outputs respectively. We

find that jointly predict roughness and metallic in one branch gives

better results than separate into two branches. This may be because

of the semantic correlations between these two material attributes.
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Network structure of our SSRT-based lighting network. , is illus-

trated in Fig. 2. We use the first 4 layers of ResNet34 as the backbone

of the CNN encoder, which produces a feature map 𝐹 of 1024 chan-

nels. After obtaining source point s in the scene by screen-space ray

tracing, we project s onto the image coordinates 𝜋 (s) and extract a

1024-channel local feature from 𝐹 . The MLP takes the local feature,

as well as light direction d and diffuse albedo 𝐾𝑑 , specular albedo

𝐾𝑠 , and roughness 𝑅 on point 𝜋 (s). To increase data frequency,
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Figure 1: Detailed architecture ofMGNet.
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Figure 2: Detailed architecture of our SSRT-based lighting prediction network.

we incorporate fourier features [Tancik et al. 2020] to encode the

G-Buffer values. The final MLP is an 8-layer 512-channel MLP with

skip connection at the 4th layer.

Network details of our out-of-view lighting network. The global

encoder is a ResNet34 CNN network followed by a global average

pooling layer. The input image passed through the global encoder

becomes a 512-channel global feature. The NeRF network we used

is a 4-layer MLP with 64 as its latent channel size. The weights

and biases of the 4-layer MLP are predicted by 8 separate branches

of hypernetwork which takes the global feature as input. Each

hypernetwork has the same structure of a 3-layer MLP with 1024

as its latent channel size.

Implementation and training details. We implement our network

model with Pytorch [2019]. We train our network using 8 NVIDIA

Tesla V100 GPUs, and use Adam [2014] optimizer with an initial

learning rate of 1𝑒-4 forMGNet and 1𝑒-5 for LightNet. ForMGNet,
the training set contains 44950 images, and we reserve 4980 images

for evaluation. For LightNet (SSRT-based network and out-of-view

network), we use 1000 scenes for training, and each scene contains

400 spatially-varying HDR environment maps. We use 90% scenes

for training, and the rest are reserved for evaluation. For the Monte

Carlo rendering layer, we pre-compute 256 sampling directions on

the surface point of each pixel using GGX importance sampling,

and query the ground-truth radiance of each sample. The radiance-

direction pairs are cached and used as training data to supervise

our network. The spatial resolution of sampled pixels is 120 × 160.

2 DETAILS OF INDOOR DATASET
The InteriorVerse dataset contains 4176 indoor scenes, which

are designed by professional indoor designers. Each scene con-

tains 1 manually-placed camera as well as several automatic gen-

erated cameras. We use the heuristic camera generating method

proposed by [Genova et al. 2017], which maximizes the number

and pixel occupancy of object categories in the output views. Im-

ages in the dataset are rendered by a commercial GPU-accelerated

path tracer with NVIDIA RTX 3090. InteriorVerse dataset pro-

vides per-pixel albedo, normal, depth, roughness, metallic and
spatially-varying environment maps as lighting representations.

The 3D locations related to each environment map are randomly

sampled in view space coordinates and will also be provided.

3 DETAILS OF TRAINING LOSS
3.1 Material-Geometry Network
We use combination of a 𝐿2 loss and a perceptual loss [Johnson et al.

2016] to avoid blurriness. For the perceptual loss Lp, we use the

output from a pretrained relu_3_3 layer from a VGG-16 network.

We find that despite non-photorealistic albedo/normal/material

maps, the perceptual loss still works well and helps to preserve

semantic consistency.

For the albedo, similar to [Li et al. 2020], we use a scale invariant

loss due to the ambiguity between color and light intensity. We

define

L
albedo

= ∥𝐴 − 𝑐𝐴∥2 + 𝜆pLp (𝐴, 𝑐𝐴), (1)

where 𝑐 = argmin𝑐 ∥𝐴 − 𝑐𝐴∥2
2
=

∑
𝑝 𝐴̂𝑝 ·𝐴𝑝

𝐴̂𝑝 ·𝐴̂𝑝

is the scale factor com-

puted by least square regression and 𝜆p is the scale factor of per-

ceptual loss.

For normals, we normalize the prediction and use a 𝐿1 angular

error as well as perceptual loss:

L
normal

=





1 − 𝑁 · ( 𝑁̂

∥𝑁̂ ∥
)





1

+ 𝜆pLp (𝑁, 𝑁̂ ) . (2)

For roughness and metallic, we use a 𝐿2 as well as a perceptual

loss. Note that roughness and metallic are single-channel predic-

tions, so we expand it into a 3-channel gray image before inputting

into the VGG network.

L
material

= ∥𝑀 − 𝑀̂ ∥2 + 𝜆pLp (𝑅, 𝑅) + 𝜆pLp (𝑀𝑡 , 𝑀̂𝑡 ) . (3)

For depth, we follow [Li et al. 2020] to use a scale-invariant

log-encoded 𝐿2 loss to tackle high-dynamic-range issues:

L
depth

= ∥ log(𝐷 + 1) − log(𝑐𝐷̂ + 1)∥2
2
, (4)

where 𝑐 =

∑
𝑝 𝐷̂𝑝 ·𝐷𝑝

𝐷̂𝑝 ·𝐷̂𝑝

is the scale factor of least square regression.

To sum up, the final loss is the weighted sum of all the losses

mentioned above:

LMGNet = 𝜆𝑎Lalbedo
+ 𝜆𝑛Lnormal

+ 𝜆𝑚L
material

+ 𝜆𝑑Ldepth
. (5)

In practice, we set 𝜆p = 0.02 and other weights to 1 for all results.

3.2 Lighting Network
Direct supervision. With ground truth lighting we can directly

supervise our model. However, since the light field is high dynamic

range, the color distribution can span many orders of magnitude.
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Figure 3: More results of geometry and BRDF estimation on synthetic dataset.

Input Photo Albedo [Li et al. 2020] Our Albedo Normal [Li et al. 2020] Our Normal

Figure 4: More results of normal and albedo estimation on real images. [Li et al. 2020]’s artifacts are highlighted.
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Ground Truth [Li et al. 2020] Ours [Li et al. 2020] Ours

Synthetic data Real data

Figure 5: Qualitative comparison of object insertion results on synthetic dataset and real-world images.

Standard 𝐿2 loss applied in HDR color space will be completely

dominated by errors in bright areas and fail to learn high-frequency

details in dark areas. We apply the same HDR supervision loss

function as in [Mildenhall et al. 2021]:

L
light

=






 𝐿𝑖 − 𝐿𝑖
sg(𝐿𝑖 ) + 𝜖







2

, (6)

where sg(·) indicates stop-gradient to prevent the denominator

from influencing the loss gradient during backpropagation, and

𝜖 = 10
−3

is the epsilon value to prevent division by zero.

Re-rendering loss. With our Monte Carlo importance sampling

rendering layer, we can use the predicted material, geometry and

lighting to re-render an image 𝐼 and enforce its consistency with the

original input image 𝐼 . Specifically, for each pixel p of image 𝐼 (the

corresponding view direction is v), we can importance sample 𝑁

incident directions {d𝑖 } along with the BRDF value {𝑓𝑟 (v, d𝑖 )} and
PDF value {𝑝 (v, d𝑖 )} according to surface normal, albedo and rough-

ness. Then, we query each radiance 𝐿𝑖 (p, d𝑖 ) from our network and

use Monte Carlo integration (Eq. 7 in main paper) to produce 𝐼 . We

use 𝐿2 loss as the re-rendering loss Lre−render = ∥𝐼 − 𝐼 ∥2.
The final loss is the weighted sum of direct light supervision loss

and re-rendering loss:

LLightNet = L
light

+ 𝜆𝑟Lre−render (7)

In practice, we set 𝜆𝑟 = 3.

4 ADDITIONAL EXPERIMENT RESULTS
Qualitative results of material and geometry estimation on syn-

thesis data. Fig. 3 shows results between our method and [Li et al.

2020] (finetuned on InteriorVerse). Our method outperforms [Li

et al. 2020], with sharper edges and better semantic consistency.

Qualitative results of material and geometry estimation on real-

world images. We test our method on real-world images fromGaron

et al. [Garon et al. 2019] in Fig. 4. Although without ground truth,

we can observe better intrinsic decomposition than prior works

from visual comparison. For albedo estimation, in the first row

of images, our method successfully extracts colors from yellow

light conditions, while [Li et al. 2020] results in overly yellowish

estimations. For normal estimation, in the second row of images,

[Li et al. 2020] made wrong normal predictions at the desk and the

chair, while our method makes more physically correct predictions.

Lighthouse [2020] Ours

Figure 6: Qualitative comparison of object insertion results
on Lighthouse’s test set. Lighthouse takes a stereo pair of
images as input.

Evaluations on re-rendered image. Fig. 7 shows qualitative re-

sults on re-render results using predicted lighting information on

example scenes in our dataset. In order to emphasize the advan-

tages of our Monte Carlo importance sampling render layer on

specular reflections, we select scenes containing surfaces with high

glossiness.

Our method significantly outperforms Li et al. [2020] in both

lighting estimation and rendering, especially on glossy and specular

surfaces. In Fig. 7, we show the re-rendering results on real data.

We choose a photo containing a specular floor that shows reflected
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Ground Truth Ours [Li et al. 2020]

Figure 7: Re-render results on real data with predicted albedo
(insets).

wall on it to demonstrate the superior quality from our Monte Carlo

rendering layer. Li et al. [2020] turns out a blurry image, while our

method successfully reconstruct even the specular reflections on the

floor. We also show the corresponding albedo prediction as insets,

to demonstrate that ourMGNet successfully extract material color

from lighting effects, while Li et al. [2020]’s albedo baked in the

reflections on the floor. As a result, our reconstructed reflections

on the floor is contributed by both precise material and lighting

predictions instead of incomplete intrinsic decomposition.

Ground Truth w/ Perceptual Loss w/o Perceptual Loss

Figure 8: Qualitative comparison of predicted albedo with
our model trained with or without perceptual loss.

Ground Truth w/ Render Loss w/o Render Loss

Figure 9: Qualitative comparison of re-rendered image with
our model trained with or without re-render loss.

Ground Truth Full Model Out-of-view Only

Figure 10: Qualitative comparison of chrome ball insertion
between using full model combined with uncertainty and
only using out-of-view network. Zoom in for details.

Qualitative results of virtual object insertions. Fig. 5 shows more

results on virtual object insertions to synthetic and real-world im-

ages. [Li et al. 2020] still fails in this task, due to its low-frequency

lighting estimation, leading to diffuse-like appearance. Our method

preserves high-frequency angular reflections and is consistent with

the surrounding environment.

Fig. 6 comparesmore results of ourmethod and Lighthouse [2020].

We use the same experimental settings as in main text, using Light-

house’s test set without finetuning our network. We outperform

Lighthouse, with more consistent reflection to the surroundings on

the sphere and more variation in lighting intensity.

Qualitative results of scene edit. We further demonstrate another

augmented reality application: scene edit. [Li et al. 2020] can per-

form material edit on diffuse surfaces, but their low-frequency

lighting prediction quality and biased rendering layer limit their

capabilities on specular surfaces. In contrast, our physically-based

MC rendering layer enables correct re-render results on specular

surfaces. As shown in Fig. 11, we edit albedo, roughness and metal-

lic on the original images. The first row changes the non-metal

glossy floor into a metallic floor (roughness unchanged), as well as

changing the albedo color. The second row increases the metallic of

the rough wall, showing rough-metal reflection effects. Our method

both produces photorealistic results.

4.1 Ablation Studies
Effects of perceptual loss. We ablate our training choices of the

material-geometry network in Fig. 8. From the results, it turns out

that the model trained without perceptual loss predicts blurry re-

sults, and high-frequency details such as carpet textures and ceiling

frames are lost. In contrast, the model trained with perceptual loss

preserves clear semantic boundaries and is capable of predicting

some of the high-frequency details. This shows the benefits of our

perceptual loss design, which helps the network to learn semantic

information of the scene.

Effects of re-render loss. We ablate our training choices of the

lighting network in Fig. 9, comparing the effects of our re-render

loss design. It turns out that lacking re-render loss leads to artifacts

of shadows in the re-rendered image, confirming the effectiveness

of re-render loss.

Comparison between out-of-view network and full model. We ab-

late between using only out-of-view network predictions and us-

ing full model predictions combined with uncertainty. We insert

a chrome ball into an image to demonstrate the difference in re-

flections in Fig. 10. The reflections in out-of-view-only prediction

are blurry and only contain angular intensity variance, while those

in full-model prediction contain more high-frequency details. This

proves that the SSRT component in LightNet enhances the light
prediction quality.
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Original Image Edited Image

Figure 11: Qualitative results of scene material edit, changing albedo, roughness and metallic on the surfaces.
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